
DOI: 10.11118/978-80-7509-820-7-0016
A CONTENT OF HEAVY METALS IN E-WASTE: A COMPARATIVE STUDY OF VARIOUS LIGHTG SOURCES
- Barbora RANTOVÁ, Martin ŠOTNAR, Milan GERŠL, Jan MAREČEK
Demand for light sources increases with the increasing energetic, technologic, and economic requirements of society. The lifetime hours of lamps are longer; however, such a waste still makes up a portion of waste production. The content of toxic metals is one of the factors that influence the environmental impact during their life cycle. Discharged light sources are separated, recycled or disposed. The sorted material can be reused as a secondary raw material, or the waste can be energetically recovered in an incinerator. One of the most disadvantageous options is landfill deposition. The separated fractions of such waste can be reused in terms of lowering the amount of waste and enhancing the circularity. Although compact fluorescent lamps and LEDs are energetically more convenient, their material requirements are more demanding. Purpose: The aim of the study, was to evaluate the heavy metal composition regarding environmental factors, considering the lifetime hours and luminescence. Design/methodology/approach: The content of heavy metals of fluorescent lamp, LED lamp and incandescent light bulb was studied using the XRF analyser. The illuminance of the light sources was measured by a lux meter. Findings: Based on the results, the LED light sources seem to be the most convenient. From the analysis, these light sources contain the lowest amount of copper and lead, also from the perspective of the lifetime hours and already existing collecting system.
Klíčová slova: light sources, heavy metals, X-ray fluorescence, LED, CFL, the incandescent lightbulb
stránky: 16-21, Publikováno: 2021, online: 2021
Reference
- Cucchiella, F., D'Adamo, I., Lenny Koh, S. C., Rosa, P. 2015. Recycling of WEEEs: an economic assessment of present and future e-waste streams. "Renewable Sustainable Energy", 51:263-272. DOI: http://dx.doi.org/10.1016/j.rser.2015.06.010
Přejít k původnímu zdroji...
- European Parliament. 2005. Directive 2005/32/EC of the European Parliament and of the Council: establishing avframework for the setting of ecodesign requirements for energy-using products and amending. European law, Strasburg, 2005, 6 July 2005, 2005/32/EC.
- European Parliament. 2009. Directive 2009/125/EC of the European parliament and of the council: establishing a framework for the setting of ecodesign requirements for energy-related products. European Law, Strasbourg, 2009, 21 October 2009, 2009/125/EC.
- Ghosh, B., Ghosh, M. K., Parhi, P. 2015. Waste printed circuit boards recycling: an extensive assessment of current status. Journal of Clean Production, 94: 5-19. DOI: http://doi.org/10.1016/j.jclepro.2015.02.024
Přejít k původnímu zdroji...
- Ministerstvo životního prostředí. 2019. Statistická ročenka životního prostředí České republiky. Avaialble at: https://www.cenia.cz/wp-content/uploads/2021/02/Statisticka_Rocenka_ZP_CR-2019.pdf [access date: 29-4-2021].
- Ekolamp. 2020. Ekolamp: kolektivní systém pro zpětný odběr elektrozařízení. Available at: https://www.ekolamp.cz/data/web/download/ekolamp-2020-final.pdf [access date: 25-2-2021].
- Euroepean Parliament. 2009. Parliamentary questions. Question reference P-0146/2009. European Parliament. [Online]. Available at: https://www.europarl.europa.eu/sides/getAllAnswers.do?reference=P-2009-0146〈uage=EN [access date:12-2-2021]
- Işildar A., Rene E. R., Hullebusch E. D., Lens P. N. L. 2018. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling, 135: 296-312. DOI: http:// doi:10.1016/j.resconrec.2017.07.031
Přejít k původnímu zdroji...
- Khan, N., & Abas, N. 2011. Comparative study of energy saving light sources. Renewable and Sustainable Energy Reviews, 15(1): 296-309. DOI: http://doi:10.1016/j.rser.2010.07.072
Přejít k původnímu zdroji...
- Lim S. R., Kang D., Ogunseitan O. A., Schoenung J. M. 2012. Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light- Emitting Diode (LED) Bulbs. Environmental Science & Technology, 47(2): 1040-1047. DOI: http:// doi:10.1021/es302886m
Přejít k původnímu zdroji...
- Liu L., Keoleian, G. A. 2020. LCA of rare earth and critical metal recovery and replacement decisions for commercial lighting waste management. Resources, Conservation and Recycling, 159: 104946. DOI: https://doi.org/10.1016/j.resconrec.2020.104846
Přejít k původnímu zdroji...
- Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. 2011. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011: 939161. DOI: http:// doi:10.1155/2011/939161
Přejít k původnímu zdroji...
- Taghipour, H., Amjad, Z., Jafarabadi, M. A., Gholampour, A., & Nowrouz, P. 2014. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions. Waste Management, 34(7): 1251-1256. DOI: http://doi:10.1016/j.wasman.2014.03.010
Přejít k původnímu zdroji...
- Zamprogno Rebello R., Weitzel Dias Carneiro Lima M. T., Yamane L. H., Ribeiro Siman R. 2020. Characterization of end-of-life LED lamps for the recovery of precious metals and rare earth elements. Resources, Conservation and Recycling, 153: 104557. DOI: https://doi.org/10.1016/j.resconrec.2019.104557
Přejít k původnímu zdroji...