
DOI: 10.11118/978-80-7509-990-7-0099
EVOLVING LANDSCAPE OF ARTIFICIAL INTELLIGENCE IN GEORGIA
- Nadia Mtchedlidze1, Zuzana Papulová1
- 1 Department of Strategy and Business, Faculty of Management, Comenius University, Odbojárov 10, 820 05, Bratislava, Slovak Republic
The current paper provides a detailed evaluation of Artificial Intelligence (AI) adoption in Georgia, identifying the opportunities and challenges within political, economic, social, technological, legal, and environmental contexts. We developed a novel theoretical framework to characterize AI stakeholders and used an Autoregressive Distributed Lag (ARDL) model to investigate how AI influences macroeconomic indicators like high-technology exports. The findings indicate significant positive short-term and long-term impacts of R&D expenditure on high-technology exports, with ICT goods exports also contributing positively over time. In contrast, real GDP negatively affects these exports, suggesting the need for policy adjustments to support AI implementation. The study highlights the importance of strengthening policy frameworks and promoting digital education to enhance AI integration in Georgia’s digital strategy.
Klíčová slova: Artificial Intelligence, Developing Economy, Georgia, ARDL
stránky: 99-110, online: 2024
Reference
- ABUSELIDZE, G. and MAMALADZE, L. 2021. The impact of artificial intelligence on employment before and during pandemic: A comparative analysis. Journal of Physics: Conference Series, 1840(1), 012040. IOP Publishing.
Přejít k původnímu zdroji...
- AI GEORGIA. 2023. AI Georgia [online]. https://www.aigeorgia.ge/ [Accessed: 2023-06-05].
- AI READINNESS INDEX 2023. Government AI Readiness Index. Oxford Insight [online]. https://oxfordinsights.com/ai-readiness/ai-readiness-index/ [Accessed: 2024-02-07].
- ALY, H. 2022. Digital transformation, development, and productivity in developing countries: is artificial intelligence a curse or a blessing? Review of Economics and Political Science, Vol. 7 No. 4, pp. 238-256.
Přejít k původnímu zdroji...
- DAHLMAN, C., MEALY, S., and WERMELINGER, M. 2016. Harnessing the digital economy for developing countries. OECD Development Centre Working Papers, No. 334, p. 8.
- KEMP, S. 2023. Digital 2023: Georgia. Datareportal [online]. https://datareportal.com/reports/digital-2023-georgia [Accessed: 2024-02-07].
- ERISTAVI, D. and DAVITURI, G. 2021. The use of Artificial intelligence systems in Georgia, Tbilisi. IDFI [online]. https://idfi.ge/en/artificial%20intelligence_international_tendencies_and_georgia [Accessed: 2024-05-07].
- EUROFAST. 2020. Tax incentives in Georgia for international IT and maritime companies. Eurofast [online]. https://euro-fast.eu/2020/10/16/tax-incentives-in-georgia-for-international-it-and-maritime- companies/ [Accessed: 2023-06-12].
- FREY, C. B. and OSBORNE, M. A. 2017. The future of employment: How susceptible are jobs to computerisation? Technological forecasting and social change. Jan 1; 114:254-80.
Přejít k původnímu zdroji...
- GEOSTAT - National Statistics office of Georgia. 2023. Geostat [Online]. Available at: https://www.geostat.ge/en [Accessed: 2023-06-12].
- GIGUASHVILII, G. and MAKASARASHVILI, T. 2021. Possibilities of Using Artificial Intelligence in Post- Pandemic Georgia. Globalization and Business. 12, 83-87.
Přejít k původnímu zdroji...
- GITA. 2023. Georgia's innovation & technology agency [online]. https://gita.gov.ge/en [Accessed: 2023-05-12].
- IDFI. 2023. Article: Access to Open Data in Georgia. IDFI [online]. https://idfi.ge/en/access-to-opena-data-in-georgia [Accessed: 2023-07-05].
- ITU. 2021. Georgia digital development country profile. ITU [online]. https://www.itu.int/en/ITU
- MCKINSEY GLOBAL INSTITUTE. 2018. Notes from the AI frontier modelling: The impact of AI on the world economy, p 3. Mckinsey Global Institute [online]. www.mckinsey.com/mgi [Accessed: 2023-05-10].
- NAPETVARIDZE, V. 2022. Artificial Intelligence in Georgia and in the World. Politics/პოლიტიკა. Dec 31(6).
- NATIONAL STATISTICS OFFICE OF GEORGIA. 2024. Real Quarterly GDP. Datareportal [online]. https://geostat.ge/media/61254/04_mshp-mudmiv-fasebshi.xlsx [Accessed: 2024-06-05].
- NATSIOSPOULOS, K. and TZEREMES, N. G. 2022. ARDL bounds test for cointegration: Replicating the Pesaran et al. (2001) results for the UK earnings equation using R. Journal of Applied Econometrics, 37(5), 1079-1090. https://doi.org/10.1002/jae.2919
Přejít k původnímu zdroji...
- OECD. 2021. State of implementation of the OECD AI Principles: Insights from national AI policies,' OECD Digital Economy Papers 311, OECD Publishing.
- OECD. 2022. Fostering Business Development and Digitalisation in Georgia. OECD Publishing, Paris.
- PARULAVA, G. 2021. Georgia - Fit for the Age of Artificial Intelligence? PMC research center Policy paper, Tbilisi.
- PFAFF, B. 2008. Analysis of Integrated and Cointegrated Time Series with R. Second Edition. Springer, New York. ISBN 0-387-27960-1
Přejít k původnímu zdroji...
- RYAN, J. A. and ULRICH, J. M. 2024. xts: eXtensible Time Series. R package version 0.13.2, https://CRAN.R-project.org/package=xts
- SAX, C. and EDDELBUEITTEL, D. 2018. Seasonal Adjustment by X-13ARIMA-SEATS in R. Journal of Statistical Software, 87(11), 1-17. https://doi.org/10.18637/jss.v087.i11
Přejít k původnímu zdroji...
- SAX, C. and STEINER, P. 2013. Temporal Disaggregation of Time Series. The R Journal, 5(2), 80-87. https://doi.org/10.32614/RJ-2013-028
Přejít k původnímu zdroji...
- TRAPLETTI, A. and HORNIK, K. 2023. tseries: Time Series Analysis and Computational Finance. R package version 0.10-55. https://CRAN.R-project.org/package=tseries
- WICKHAM, H. and BRYAN, J. 2023. readxl: Read Excel Files. R package version 1.4.3, https://CRAN.R-project.org/package=readxl.
- WICKHAM, H., FRANCOIS, R., HENRY, L., MULLER, K. and VAUGHAN, D. 2023. dplyr: A Grammar of Data Manipulation. R package version 1.1.4. https://CRAN.R-project.org/package=dplyr
- WILSON, H. J., DAUGHERTY, P. and BIANZINO, N. 2017. The jobs that artificial intelligence will create. MIT Sloan Management Review. Jul 1; 58(4): 14.
- WIPO. 2023. World intellectual property Organization. WIPO [online]. https://www.wipo.int/directory/en/details.jsp?country_code=GE, [Accessed: 2023-06-13].
- WISSKIRCHEN, G., BIACABE, B. T., BORMAN, U., MUNTZ, A., NIEHAU, G., SOLER, G. J. and VON BRAUCHITSCH, B. 2017. Artificial intelligence and robotics and their impact on the workplace. IBA Global Employment Institute. Apr; 11(5): 49-67, p 14.
- WORLD BANK. 2024. Research and Development Expenditure (% of GDP) [online]. https://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS [Accessed: 2024-03-07].
- WYNSBERGHE, V. A. 2021. Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics 1, no. 3: 213-218.
Přejít k původnímu zdroji...
- XIE, Y. 2023. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.45. https://yihui.org/knitr/
- YU, K. H., ZHANG, Y., LI, D., MONTENEGRO-MARIN, C. E., and KUMAR, P. M. 2021. Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environmental Impact Assessment Review, 86, p.106492.
Přejít k původnímu zdroji...
- ZEILEIS, A. and GROTHENDIECK, G. 2005. zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14(6), 1-27. https://doi.org/10.18637/jss.v014.i06
Přejít k původnímu zdroji...
- ZEILEIS, A. and HOTHORN, T. 2002. Diagnostic Checking in Regression Relationships. R News. 2(3), 7-10. https://CRAN.R-project.org/doc/Rnews/