DOI - Mendel University Press

DOI identifiers

DOI: 10.11118/978-80-7701-024-5-0079

Removing Soil Compaction by Deep Grouting

Luboš Sedlák1,2, Lubica Pospíšilová1,2, Aleš Kučera2, Jakub Prudil1,3, Vlastimil Skoták2, Radomír Ulrich4, Michal Rábek5
1 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
2 Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
3 Agricultural Research, Ltd. Troubsko, Zahradní 1, 66 441 Troubsko, Czech Republic
4 Department of Engineering, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
5 Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic

Soil compaction causes many serious problems in agriculture and the environment. Mainly improper intensive farming, heavy machinery, and reduced organic fertilizer supplements increase soil ocompaction. It results in the compression of pores and impedes root growth, disturbing water and air transport, and yield decreases. The issue of soil quality and health cannot be solved without the determination of the soil’s physical parameters and penetration resistance. The study aims at the reduction of soil compaction using three technologies of deep grouting: (1) the control site; (2) the Vogt Geo Injector; (3) the Vogt Geo Injector enriched Diatomaceous earth; (4) the tractor with air injector. The soil injection was done with high-pressure air at 8,5 bar (123psi) and penetration resistance was registered by the electronic penetrologger Eijkelkamp 06.15.SA with GPS localization. The distances from the drilling point were: 0.10 m, 0.40 m, 0.70 m and 1 m. It was supposed, that after amending soil with Diatomaceous earth, voids were filled with low decomposable material, which improves the effectivity of injections. The obtained results showed that using the Vogt Geo Injector enriched with Diatomaceous earth gave the lowest values of soil penetration resistance. In both variants, the Vogt Geo injector decompaction area was about 1 m2 from the drilling point to a depth of 1 m.  In both variants, the Vogt Geo injector decompaction area was about 1 m2 from the drilling point. The drilling depth was 0.80 m and the maximum effect of grouting was approximately 0.40 m.

Keywords: soil compaction, high-pressure injection, penetration resistance

pages: 79-84, online: 2025



References

  1. BATEY, T. 2009. Soil compaction and soil management - a review. Soil Use and Management. 25, 335-345. https://doi.org/10.1111/j.1475-2743.2009.00236.x Go to original source...
  2. BEDRNA, Z. 2002. Environmental soil science [in Slovak]. Bratislava: Veda, 352 pp.
  3. BYRD, C. W., CASSELM D. K. 1980. The effect of sand content upon cone index and selected physical properties. Soil Sci. 129(1980), 197-204. Go to original source...
  4. DEXTER, A. R., CZYZ, E. A., GATE, O. P. 2007. A method for prediction of soil penetration resistance.
  5. Soil Till. Res. 93, 412-419. https://doi.org/10.1016/j.still.2006.05.011. Go to original source...
  6. FERRER, A., USOWICZ B., LIPIE, J. 2005. Effects of tractor traffic on spatial variability of soil strength and water content in grass-covered and cultivated sloping vineyard. Soil & Tillage Research. 84, 127-138.https://doi.org/10.1016/j.still.2004.10.003. Go to original source...
  7. FLOWERS, M. D., LAL, R. 1998. Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio. Soil & Tillage Research. 48, 21-35. Go to original source...
  8. GRUNWALD, S., LOWER, B., ROONEY, D. J., MCSWEENE, K. 2001. Profile cone penetrometer data used to distinguish between soil materials. Soil & Tillage Research. 62, 27-40. https://doi.org/10.1016/S0167-1987(01)00201-X Go to original source...
  9. HAKANSSON, I., VOORHEES, W. B., RILEY, H. 1988. Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil & Tillage Research. 11, 239-282. Go to original source...
  10. HUSSEIN, M. A., ANTILLE, D. L., KODUR, S., CHEN, G. TULLBERG J. N. 2021. Controlled Traffic Farming Effects on Productivity of Grain Sorghum, Rainfall and Fertiliser Nitrogen Use Efficiency. J. Agric. Food Res. 2021(3), 100111. Go to original source...
  11. JAVŮREK, M., VACH, M. 2008. Negative effects of soil compaction and a set of measures to eliminate them [in Czech]. Výzkumný ústav rostlinné výroby.
  12. KELLER, T., SANDIN, M., COLOMBI, T., HORN, R., OR, D. 2019. Historical increase in agriculture machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil & Tillage Research. 194, 1-12. Go to original source...
  13. KOK, H., TAYLOR, R. K., LAMOND, R. E., KESSEN, S. 1996. Soil compaction: problems and solution. Publication AF15. Cooperative extension services, Kansas State University, Manhattan.
  14. NELSON, D. W., SOMMERS, L. E. 1996. Total carbon, organic carbon, and organic matter. In: SPARKS, D. L. et al. (Eds.). Methods of Soil Analysis. Part 3. pp. 961-1010. Go to original source...
  15. LIU, K., BENETTI, M., SOZZI, M., GASPARINI, F., SARTORI, L. 2022. Soil Compaction under Different Traction Resistance Conditions-A Case Study in North Italy. Agriculture. 12(11), 1954. https://doi.org/10.3390/agriculture12111954 Go to original source...
  16. POLCAR, A., ŠIMEČKOVÁ, J., VOTAVA, J., KUMBÁR, V. 2021. Effect of crossing agricultural machinery on soil compaction [in Czech: Vliv přejezdu zemědělské techniky na utužení půdy]. Listy cukrovarnické a řepařské. 137(3), 108-112. ISSN 1210-3306. http://www.cukr-listy.cz/on_line/2021/PDF/108-112.pdf
  17. POSPÍŠILOVÁ, L., VLČEK, V., HYBLER, V., HÁBOV, M., JANDÁK, J. 2016. Standard analytical methods and evaluation criteria of soil physical, agrochemical, biological, and hygienic parameters [in Czech: Standardní analytické metody a kritéria hodnocení fyzikálních, agrochemických, biologických a hygienických parametrů půd]. Folia Universitatis Agriculturae et Silviculturae Mendeliannae Brunensis, IX, 2016, 3. Brno. 123 p. ISBN 978-80-7375-438-4
  18. SMITH, C. W., JOHNSTON, M. A., LORENTZ, S. 1997. The effect of soil compaction and physical properties on the mechanical resistance of South African forestry soils. Geoderma. 78, 93-111. Go to original source...
  19. STALHAM, M. A., ALLEN, E. J., HERRY, F. X. 2005. Effect of soil compaction on potato growth and its removal by cultivation. Research review R261 British Potato Council, Oxford, UK.
  20. WHALLEY, W. R., DUMITRU, E., DEXTER, A. R. 1995. Relationship between wheel-traffic-induced soil compaction, nutrient availability and crop growth - a review. Journal of Production Agriculture. 3, 460-469. Go to original source...
  21. USOWICZ B., LIPIEC J., FERRERO A. 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int. J. Heat Mass Transf. 49, 5010-5017. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.023 Go to original source...
  22. USOWICZ, B., LIPIEC, J. 2009. Spatial distribution of soil penetration resistance as affected by soil compaction:The fractal approach. Ecological Complexity. 6, 263-271. Go to original source...
  23. VERMEULEN, G. D., TULLBERG, J., CHAMEN, W. 2010. Controlled traffic farming. In: Soil Engineering. Soil Biology. Volume 19. Berlin/Heidelberg, Germany: Springer. ISBN 0305-7364.
  24. CAMPBELL, D. J., O'SULLIVAN, M. F. 1991. The cone penetrologger in relation to trafficability, Compaction, and Tillage. In: SMITH, K. A., MULLINS, C. E. Soil Analysis. Physical Methods. Books in Soils, Plants and the Environment.
  25. LOCHER, W. P., DE BAKKER, H. (Eds.). 1990. Bodenkunde van Nederland. Malmberg: Den Bosch.