
DOI: 10.11118/978-80-7701-042-9-0113
EXTENDED DATA MONETIZATION FRAMEWORK FOR OPTIMAL STRATEGY SELECTION
- Attila Szekeres1, Gabor Guta1, Szabolcs Marien1, Henriett Karolyi1
- 1 John von Neumann University, Doctoral School of Management and Business Administration, Budapest, Hungary
In conclusion, the extended framework presented in this paper offers a significant advancement in strategic planning for data monetization. By incorporating external and technical factors alongside organizational capabilities, the model enables a more nuanced and actionable understanding of how to extract value from data. It is particularly relevant in sectors where regulatory, infrastructural, or competitive constraints significantly shape business models. The framework supports companies of all sizes and levels of maturity in assessing their readiness and selecting strategies that align with their environment. As data continues to drive innovation and economic growth, such models will be essential tools in shaping sustainable and profitable data-driven enterprises.
Keywords: data monetization, startegy, digital economy, data asset
pages: 113-115, online: 2025
References
- Mousa, M., Sági, J., Zéman, Z. 2021. Brand and firm value: Evidence from arab emerging markets. Economies. 9(1), 5. https://doi.org/10.3390/economies9010005
Go to original source...
- Ogachi, D. et al. 2020. Corporate social responsibility and firm value protection, International Journal of Financial Studies. 8(4), 72.
Go to original source...
- Mallinguh, E. et al. 2022. The impact of firm characteristics, business competitiveness, and technology upgrade hurdles on R&D costs. Problems and Perspectives in Management. 20(4), 264-277.
Go to original source...
- Károlyi, H. et al. 2025. Adatvezérelt Stratégia és kontrollált vállalati fejlődés: Az adatvagyon szerepe a jövőépítésben. In: Musinszki, Z. et al. (eds.). Gazdálkodási Kihívások 2024-BEN. Miskolc, Magyarország: MTA MAB Gazdálkodástudományi Munkabizottság, pp. 114-123.
- Sohu, J. M., Hongyun, T., Junejo, I., Akhtar, S., Ejaz, F., Dunay, A., Hossain, Md. B. 2024. Driving sustainable competitiveness: unveiling the nexus of green intellectual capital and environmental regulations on greening SME performance. Frontiers in Environmental Science. 12 2024. https://doi.org/10.3389/fenvs.2024.1348994
Go to original source...
- Dunay, A. et al. 2023. The applicability of generative adversarial networks in the management of contemporary business organizations. In: 12th International Conference on Management 2023. https://doi.org/10.17512/CUT/9788371939563/12
Go to original source...
- Szekeres, A. et al. 2025. Az adatvezérelt döntéshozatalt befolyásoló percepciók, prekoncepciók és egyéb emocionális torzítások a managementben. In: MTA MAB Gazdálkodástudományi Munkabizottság. Gazdálkodási Kihívások 2024-BEN. MTA. https://www.researchgate.net/publication/388816981_Az_adatvezerelt_donteshozatalt_befolyasolo_percepciok_prekoncepciok_es_egyeb_emocionalis_torzitasok_a_managementben
- Karolyi, H., Martzy, A., Zoltan, Z. 2025. Adatvezérelt döntéshozatal és mesterséges intelligencia modellezések módszertani elemzése klinikai környezetben, In: Musinszki, Z., Horváth, Á., Szűcsné Markovics, K. (eds.). Gazdálkodási Kihívások. Miskolc, HU: MTA MAB Gazdálkodástudományi Munkabizottság, pp. 124-134.