
DOI: 10.11118/978-80-7701-049-8-0049
MOŽNOSTI POUŽITIA EKTOMYKORÍZNEJ SYMBIÓZY PRI PESTOVANÍ SADBOVÉHO MATERIÁLU TOPOĽA A VŔBY V PODMIENKACH DUNAJSKÝCH LUŽNÝCH LESOV / INCORPORATION OF ECTOMYCORRHIZAL SYMBIOSIS IN THE CULTIVATION OF PLANTING MATERIAL OF POPLAR AND WILLOV IN CONDITIONS OF THE DANUBE RIPARIAN FORESTS
- Martin Belko1, Martin Bartko1
- 1 Sekcia pre vedu a výskum, Národné lesnícke centrum, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovensko
The main objectives of this contribution were: i) exploration of species of ectomycorrhizal (ECM) fungi present on the root systems of poplar and willow trees in the territory of the Danube riparian forest protected Area and ii) proposal of a procedure for using the ECM fungi in the cultivation of poplar and willow planting material within the currently implemented LIFE-RESISTANCE project aimed at the complex transformation of forest stands of the Danube riparian forest, consisting mainly of non-native hybrid individuals of fast-growing trees. Visual comparison of external morphological features of the collected root tips with descriptions given in the literature indicate the presence of 5 different species of ECM fungi in both examined trees. From the available literature review, the most suitable method of inoculation of planting material under operational conditions appears to be the addition of natural materials (forest soil, humus) with the presence of ECM fungi to the growing substrate before planting and subsequently continuously during planting material cultivation.
Keywords: ectomycorrhizal fungi, inoculation, forest nursery, target plant concept
pages: 49-55, Published: 2025, online: 2025
References
- Bartko, M. 2020. Pestovanie rýchorastúcich drevín v podmienkach Slovenska. In: Štefančík, I., Bednárová, D. (eds.). Aktuálne problémy v zakladaní a pestovaní lesa. Zvolen: Národné lesnícke centrum, p. 92-105.
- Brundrett, M. C., Tedersoo, L. 2020. Resolving the mycorrhizal status of important northern hemisphere trees. Plant Soil. 454, 3-34.
Go to original source...
- Davis, A. S., Pinto, J. R. 2021. The scientific basis of the target plant concept: An Overview. Forests. 12(9), 1293.
Go to original source...
- Demo, M., Prčík, M., Tóthová, D., Húska, D. 2013. Production and energy potential of different hybrids of poplar in the soil and climate conditions of southwetern Slovakia. Wood Research. 58 (3), 439-450.
- DEEMY. 2025. DEEMY-An Information System for Characterization and Determination of Ectomycorrhizae [cit. 2025-05-06]. http://www.deemy.de
- Grossnickle, S. C. 2005. Importance of root growth in overcoming planting stress. New Forests. 30, 273-294.
Go to original source...
- Grossnickle, S. C. 2012. Why seedlings survive: influence of plant attributes. New Forests. 43, 711-738.
Go to original source...
- Grossnickle, S. C., El-Kassaby, Y. A. 2016. Bareroot versus container stocktypes: a performance comparison. New Forests. 47, 1-51.
Go to original source...
- Himanen, K., Nygren, M., Pennanen, T. 2024. Mycelial innocultaion of containerized Norway spruce seedlings with ectomycorrhizal fungi. New Forests. 55, 47-61.
Go to original source...
- Hrynkiewicz, K., Ingeborg, H., Christel, B. 2008. Ectomycorrhizal community structure under willows at former ore mining sites. European Journal of Soil Biology. 44(1), 37-44.
Go to original source...
- Hrynkiewicz, K., Szymańska, S, Piernik, A, Thiem, D. 2015. Ectomycorrhizal community structure of Salix and Betula spp. at a saline site in Central Poland in relation to the seasons and soil parameters. Water Air Soil Pollution. 226, 99.
Go to original source...
- Hrynkiewicz, K., Furtado, B. U., Szydɫo, J., Baum, C. 2024. Ectomycorrhizal Diversity and Exploration Types in Salix caprea. International Journal of Plant Biology. 15(2), 340-357.
Go to original source...
- Katanić, M., Grebenc, T., Orlović, S., Matavuly, M., Kovačević, B., Bajc, M., Kraigher, H. 2015. Ectomycorrhizal fungal community associated with autochthonous white poplar from Serbia. iForest. 9 (2), 330-336.
Go to original source...
- Nara, K., Nakaya, H., Wu, B., Zhou, Z., Hogetsu, T. 2003. Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytologist. 159(3), 743-756.
Go to original source...
- Querejeta, J. I., Roldán, A., Albaladejo, J., Castillo, V. 1998. The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid mediterranean site with Pinus halepensis. Forest Science. 44, 203-211.
Go to original source...
- Repáč, I. 2014. Ectomycorrhizal inoculum and inoculation techniques. In: Rai, M., Varma, A. (eds.). Diversity and Biotechnology of Ectomycorrhizae. Berlin Heidelberg: Springer-Verlag, p. 43-66.
Go to original source...
- Repáč, I., Balanda, M., Vencúrik, J., Kmet, J., Krajmerová, D., Paule, L. 2014. Effects of substrate and ectomycorrhizal inoculation on the development of two-years-old container-grown Norway spruce (Picea abies Karst.) seedlings. iForest. 8, 487-496.
Go to original source...
- Repáč, I., belko, M., Krajmerová, D., Paule, L. 2021. Planting time, stock type and additive effects on the development of spruceand pine plantations in Western Carpathian Mts. New Forests. 52(3), 449-472.
Go to original source...
- Rincón, A., Alvarez, I. F., Pera, J. 2001. Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza. 11, 265-271.
Go to original source...
- Rincón, A., de Felipe, M. R., Fernández-Pascual, M. 2007. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza. 18, 23-32.
Go to original source...
- Szuba, A. 2015. Ectomycorrhiza of Populus. Forest Ecology and Management. 347, 156-169.
Go to original source...