DOI - Mendel University Press

DOI identifiers

DOI: 10.11118/978-80-7701-049-8-0117

KOMPETIČNÍ VZTAHY V POROSTECH S ROZDÍLNOU STRUKTUROU A JEJICH VLIV NA TLOUŠŤKOVÝ PŘÍRŮST / COMPETITIVE RELATIONSHIPS IN STANDS WITH DIFFERENT STRUCTURES AND THEIR EFFECT ON RADIAL INCREMENT

Martin Kománek1, Eliška Žižková1, Černý Jakub1,2
1 Mendelova univerzita v Brně, Lesnická a dřevařská fakulta, Ústav zakládání a pěstění lesů, Zemědělská 3, 613 00 Brno, Česká republika
2 Výzkumný ústav lesního hospodářství a myslivosti, v. v. i., Výzkumná stanice Opočno, Na Olivě 550, 517 73 Opočno, Česká republika

This study examined competition in forest stands with varying structures. The structure of forest stands plays a significant role in the production of individual trees and the wider ecosystem. Monocultures are more susceptible to decay than mixed forests, which comprise at least two tree species. In the Czech Republic, forest ecosystems are primarily disrupted by abiotic factors, most frequently a combination of water shortage and wind damage. With changing forest composition, there is a necessity to focus on stand mixtures and their production capacity. Norway spruce and European beech monocultures (A), even-aged mixed stands (B), and stands with a differentiated structure converted to selection forest (C) were analysed. The increment of spruce at the basal area in differentiated stands converted to uneven-aged forest was significantly higher (p<0.05) than that of spruce in other variants and beech in monoculture. The differences were not significant for beech, partly due to the lower DBH in the mixed stand variant, where spruce dominates over beech when comparing diameter at breast height.

Keywords: Norway spruce, European beech, competition, mixed forests, monocultures

pages: 117-123, Published: 2025, online: 2025



References

  1. Bunn, A. G. 2008. A dendrochronology program library in R (dplR). Dendrochronologia. 26(2), 115-124. Go to original source...
  2. Deliège, A., Nicolay, S. 2016. Köppen-Geiger climate classification for Europe recaptured via the Hölder regularity of air temperature data. Pure and Applied Geophysics. 173(8), 2885-2898. Go to original source...
  3. Grossiord, C. H., Granier, A., Gessler, A., Pollastrini, M., Bonal, D. 2014. The influence of tree species mixture on ecosystem-level carbon accumulation and water use in a mixed boreal plantation. Forest Ecology and Management. 298, 82-92. https://doi.org/10.1016/j.foreco.2013.03.001 Go to original source...
  4. Hammond, M. E., Pokorný, R., Dobrovolný, L. 2021. Gap regeneration and dynamics: the case study of mixed forests at Křtiny in the Czech Republic. Central European Forestry Journal. 67, 135-147. Go to original source...
  5. Hegyi, F. 1974. A simulation model for managing jack-pine stands. In: Fries, J. (Ed.). Growth models for tree and stand simulation. Stockholm, Sweden: Royal College of Forestry, p. 74-90
  6. Hilmers, T., Biber, P., Knoke, T., Pretzsch, H. 2020. Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. European Journal of Forest Research. 139(4), 567-584. Go to original source...
  7. Johann, E. 2006. Historical development of nature-based forestry in Central Europe. In: Nature based forestry in Central Europe. Alternatives to industrial forestry and strict preservation. Proceedings, Univ. of Ljubljana, p. 1-18.
  8. Kadavý, J., Kneiflová, J., Kneifl, M., Uherková, B. 2024. Using Marteloscope in selection forestry - Study case from "Pokojná hora". Journal of Forest Science. 70(9), 447-457. Go to original source...
  9. Kománek, M., Knott, R., Kadavý, J., Kneifl, M. 2024. Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands? Forests. 15(12), 2246. Go to original source...
  10. Lebourgeois, F., Gomez, N., Pinto, P., Mérian, P. 2013. Mixed stands reduce Abies alba tree ring sensitivity to summer drought in the Vosges mountains, western Europe. Forest Ecology and Management. 303, 61-71. https://doi.org/10.1016/j.foreco.2013.04.003 Go to original source...
  11. Mašínová, T., Bahnmann, B. D., Větrovský, T., Tomšovský, M., Merunková, K., Baldrian, P. 2017. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiology Ecology. 93, 1-10. Go to original source...
  12. Maxwell, R. S., Larson, L.-A. 2021. Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia. 67, 125841. Go to original source...
  13. Pretzsch, H. et al. 2020. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science. 67(7), 712. Go to original source...
  14. Pretzsch, H. et al. 2020. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. European Journal of Forest Research. 139: 349-367. https://doi.org/10.1017/s10342-019-01233-y Go to original source...
  15. Zeller, L., Pretzsch, H. 2019. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. Forest Ecology and Management. 434, 193-204. https://doi.org/10.1016/j.foreco.2018.12.024 Go to original source...