DOI - Mendel University Press

DOI identifiers

DOI: 10.11118/978-80-7701-047-4-0039

WHICH AI MODEL LEADS IN SUMMARIZING FINANCIAL ARTICLES? A COMPARATIVE ANALYSIS OF GPT, MISTRAL, AND LLAMA

Jana Dannhoferová1, Jan Přichystal1
1 Department of Informatics, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

In an era where financial data grows at an unprecedented pace, effective summarization is vital for informed decision-making. This study rigorously evaluates the summarization capabilities of three advanced AI models—GPT-4o, Mistral Instruct, and Llama 3.1 8B Instruct 128k—when applied to diverse financial articles. A key contribution of this research is the development of a comprehensive evaluation framework, which assesses the models across critical dimensions, including accuracy, clarity, relevance, adherence to formatting specifications, and practical usability. While GPT consistently achieved the highest overall scores, Llama demonstrated superior performance in certain criteria, such as clarity and compression efficiency, highlighting its potential for applications where brevity and conciseness are prioritized. Despite occasional inconsistencies, Mistral excelled in generating concise summaries with high compression ratios. Our findings emphasize that the selection of an AI model should depend on specific task priorities—whether it is accuracy, brevity, or response speed. These insights underline the importance of both rigorous evaluation methodologies and careful model selection based on task-specific requirements, paving the way for more targeted applications and further research into AI-driven summarization tools in finance.

Keywords: artificial intelligence, LLMs, AI summarization, financial articles, evaluation, GPT, Mistral, Llama, metrics

pages: 39-50, online: 2025



References

  1. Binwahlan, M. S., Salim, N., Suanmali, L. 2010. Fuzzy swarm diversity hybrid model for text summarization. Information Processing and Management, 46(5), 571-588. https://doi.org/10.1016/j.ipm.2010.03.004 Go to original source...
  2. Dhaini, M., Erdogan, E., Bakshi, S., Kasneci, G. 2024. Explainability Meets Text Summarization: A Survey. In: Proceedings of the 17th International Natural Language Generation Conference. Tokyo, Japan: Association for Computational Linguistics, p. 631-645. Go to original source...
  3. Gambhir, M., Gupta, V. 2017. Recent automatic text summarization techniques: a survey. Artificial Intelligence Review. 47(1), 1-66. https://doi.org/10.1007/s10462-016-9475-9 Go to original source...
  4. Goriparthi, R. G. 2021. AI-Driven Natural Language Processing for Multilingual Text Summarization and Translation. Revista de Inteligencia Artificial en Medicina. 12(1), 513-535. [Accessed 2025, January 11] http://redcrevistas.com/index.php/Revista/article/view/226
  5. Liu, Y. L., Cao, M., Blodgett, S. L., Cheung, J. C. K., Olteanu, A., Trischler, A. 2023. Responsible AI Considerations in Text Summarization Research: A Review of Current Practices. arXiv preprint. arXiv: 2311.11103v1. https://doi.org/10.48550/arXiv.2311.11103 Go to original source...
  6. Maylawati, D. S., Shalih, K. M., Ramdhani, M. A., Slamet, C., Ramdania, D. R. 2024. Indonesian Abstractive Text Summarization with Bidirectional Long Short-Term Memory (Bi-LSTM). In: 12th International Conference on Cyber and IT Service Management (CITSM). https://doi.org/10.1109/CITSM64103.2024.10775593 Go to original source...
  7. Nazari, N., Mahdavi, M. A. 2018. A survey on Automatic Text Summarization. Journal of AI and Data Mining. 7(1), 121-135. https://doi.org/10.22044/jadm.2018.6139.1726 Go to original source...
  8. Paulor, E. B., Woldeyohannis, M. M., Dana B. S., Yesuf S. M., Yigezu M. G. 2024. Extractive Text Summarization for Wolaytta Language Using Recurrent Neural Network. In International Conference on Information and Communication Technology for Development for Africa (ICT4DA). https://doi.org/0.1109/ICT4DA62874.2024.10777225 Go to original source...
  9. Raman, J., Meenakshi, K. 2021. Automatic Text Summarization of Article (NEWS) Using Lexical Chains and WordNet-A Review. In: Hemanth, D., Vadivu, G., Sangeetha, M., Balas, V. (Eds.). Artificial Intelligence Techniques for Advanced Computing Applications. Lecture Notes in Networks and Systems, vol 130. Singapore: Springer. https://doi.org/10.1007/978-981-15-5329-5_26 Go to original source...
  10. Rahman, N. A., ; Ramlam, S. N. A., Azhar, N. A., Hanum, H. M., Raml, N. I. and Lateh, N. 2021. Automatic Text Summarization for Malay News Documents Using Latent Dirichlet Allocation and Sentence Selection Algorithm. In: Fifth International Conference on Information Retrieval and Knowledge Management (CAMP). IEEE. https://doi.org/10.1109/CAMP51653.2021.9498029 Go to original source...
  11. Roy, K., Mukherjee, S., Dawn, S. 2023. Automated Article Summarization using Artificial Intelligence Using React JS and Generative AI. Journal of Emerging Technologies and Innovative Research (JETIR). 10(6), 78-87. ISSN: 2349-5162.
  12. Saiyyad, M. M., Patil, N. N. 2024. Text Summarization Using Deep Learning Techniques: A Review. Engineering Proceedings. 59(1), 194. https://doi.org/10.3390/engproc2023059194 Go to original source...
  13. Singh, S., Deepak, G. 2021. Towards a Knowledge Centric Semantic Approach for Text Summarization. In: Data Science and Security. Lecture Notes in Networks and Systems, vol 290. Singapore: Springer. https://doi.org/10.1007/978-981-16-4486-3_1 Go to original source...
  14. Sinha, A., Yadav, A., Gahlot, A. 2018. Extractive Text Summarization using Neural Networks (Version 1). arXiv. 1802.10137. https://doi.org/10.48550/ARXIV.1802.10137 Go to original source...
  15. Supriyono, Wibawa, A. P., Suyono, Kurniawan, F. 2024. A survey of text summarization: Techniques, evaluation and challenges. Natural Language Processing Journal. 7, 100070. Elsevier BV. https://doi.org/10.1016/j.nlp.2024.100070 Go to original source...
  16. Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., Setiadi, D. R. I. M. 2022. Review of automatic text summarization techniques and methods. Journal of King Saud University - Computer and Information Sciences. 34(4), 1029-1046. Springer Science and Business Media LLC. https://doi.org/10.1016/j.jksuci.2020.05.006 Go to original source...
  17. Yadav, D., Desai, J., Yadav, A. K. 2022. Automatic Text Summarization Methods: A Comprehensive Review (Version 1). arXiv:2204.01849v1. https://doi.org/10.48550/ARXIV.2204.01849 Go to original source...
  18. Yang, M., Wang, X., Lu, Y., Lv, J., Shen, Y., Li, C. 2020. Plausibility-promoting generative adversarial network for abstractive text summarization with multi-task constraint. Information Sciences. 521, 46-61. https://doi.org/10.1016/j.ins.2020.02.040 Go to original source...