DOI - Mendel University Press

DOI identifiers

ISBN online: 978-80-7701-071-9 | DOI: 10.11118/978-80-7701-071-9

Metodika ošetření osiv nanočásticemi za účelem zlepšení vybraných kvalitativních parametrů

Certifikovaná metodika

Miroslav Baránek (a kolektiv)

The aim of this methodology is to describe innovative procedures for treating seeds with nanoparticles and nanocomposites that lead to improved seed health, increased germination rates and, subsequently, enhanced growth parameters of plants. The methodology focuses on optimising the application – specifically the choice of a suitable type of nanoparticles/nanocomposites, their concentration and duration of exposure – with the aim of reducing microbial contamination and supporting early plant development. Although nanotechnologies have considerable innovative potential in agriculture, in the field of seed treatment there is still a lack of practical methodological guidelines that would enable their wider use in practice. This methodology therefore provides concrete recommendations for the effective application of nanoparticles and highlights key factors that previous research has identified as crucial for achieving the desired effect – namely the type of nanoparticles, their concentration, the mode of application and the duration of exposure on the seeds. Based on laboratory tests and practical verification carried out on model crops such as oilseed rape and selected vegetable species, the methodology offers a comprehensive framework for the use of these technologies both in research and in seed production. The results show that properly adjusted treatment can significantly reduce the microbial load of seeds and at the same time accelerate the germination process. The approaches described thus open the way for broader integration of nanotechnologies into modern agricultural production – with an emphasis on their practical benefits and long-term sustainability.

Keywords: nanoparticles, nanopriming, antimicrobial effect, germination

1. edition, online: 2025, publisher: Mendelova univerzita v Brně



References

  1. ABBASI KHALAKI, M., MOAMERI, M., ASGARI LAJAYER, B., ASTATKIE, T. 2020. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation. 93, 13-28. Go to original source...
  2. ACHARYA, P., JAYAPRAKASHA, G. K., CROSBY, K. M., JIFON, J. L., PATIL, B. S. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports. 10, 5037. Go to original source...
  3. AFSHEEN, S., NASEER, H., IQBAL, T., ABRAR, M., BASHIR, A., IJAZ, M. 2020. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Materials Chemistry and Physics. 252, 123216. Go to original source...
  4. AFZAL, S., SHARMA, D., SINGH, N. K. 2021. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.). Environmental Science and Pollution Research. 28, 40275-40287. Go to original source...
  5. AHMED, S., AHMAD, M., SWAMI, B. L., IKRAM, S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research. 7(1), 17-28. Go to original source...
  6. ALIASGHARI, A., KHORASGANI, M. R., VAEZIFAR, S., RAHIMI, F., YOUNESI, H., KHOROUSHI, M. 2016. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro study. Iranian Journal of Microbiology. 8(2), 93-100.
  7. ALLAN, J., BELZ, S., HOEVELER, A., HUGAS, M., OKUDA, H., PATRI, A., RAUSCHER, H., SILVA, P., SLIKKER, W., SOKULL-KLUETTGEN, B. 2021. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology. 122, 104885. Go to original source...
  8. AHUJA, R., SIDHU, A., BALA, A. 2019. Synthesis and evaluation of iron(ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. European Journal of Plant Pathology. 155(1), 163-171. Go to original source...
  9. AZIZI-LALABADI, M., EHSANI, A., DIVBAND, B., ALIZADEH-SANI, M. 2019. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Scientific Reports. 9, 17439. Go to original source...
  10. AWASTHI, A., BANSAL, S., JANGIR, L. K., AWASTHI, G., AWASTHI, K. K., AWASTHI, K. 2017. Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromolecular Symposia. 376, 1700043. Go to original source...
  11. BRADFORD, K. J. 1995. Water relations in seed germination. In: KIGEL, J., GALILI, G. (Eds.). Seed development and germination. New York: Marcel Dekker, pp. 351-396. Go to original source...
  12. BURMAN, U., SAINI, M., KUMAR, P. 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry. 95(4), 605-612. Go to original source...
  13. BYTEŠNÍKOVÁ, Z., PEČENKA, J., TEKIELSKA, D., PEKÁRKOVÁ, J., RIDOŠKOVÁ, A., BEZDIČKA, P., …, RICHTERA, L. 2023. Smart bactericide based on reduced graphene oxide decorated with copper and zinc nanoparticles. Chemical and Biological Technologies in Agriculture. 10(1), 116. Go to original source...
  14. CHOUDHARY, R. C., KUMARASWAMY, R. V., KUMARI, S., SHARMA, S. S., PAL, A., RALIYA, R., BISWAS, P., SAHARAN, V. 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules. 127, 126-135. Go to original source...
  15. DESHMUKH, R. K., NGUYEN, H. T., BELANGER, R. R. 2017. Editorial: Aquaporins: Dynamic Role and Regulation. Frontiers in Plant Science. 8, 1420. Go to original source...
  16. DIMKPA, C. O., MCLEAN, J. E., LATTA, D. E., MANANGÓN, E., BRITT, D. W., JOHNSON, W. P., BOYANOV, M. I., ANDERSON, A. J. 2012. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research. 14, 1125. Go to original source...
  17. DIZAJ, S. M., LOTFIPOUR, F., BARZEGAR-JALALI, M., ZARRINTAN, M. H., ADIBKIA, K. 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C. 44, 278-284. Go to original source...
  18. DIZAJ, S. M., MENNATI, A., JAFARI, S., KHEZRI, K., ADIBKIA, K. 2015. Antimicrobial activity of carbon-based nanoparticles. Advanced Pharmaceutical Bulletin. 5(1), 19-23.
  19. DO ESPIRITO SANTO PEREIRA, A., CAIXETA OLIVEIRA, H., FERNANDES FRACETO, L., SANTAELLA, C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 11(2), 267. Go to original source...
  20. DUHAN, J. S., KUMAR, R., KUMAR, N., KAUR, P., NEHRA, K., DUHAN, S. 2017. Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports. 15, 11-23. Go to original source...
  21. EALIAS, A. M., SARAVANAKUMAR, M. P. 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering. 263, 032019. Go to original source...
  22. EFSA SCIENTIFIC COMMITTEE, MORE, S., BAMPIDIS, V., BENFORD, D., BRAGARD, C., HALLDORSSON, T., HERNANDEZ-JEREZ, A., HOUGAARD BENNEKOU, S., KOUTSOUMANIS, K., LAMBRE, C., et al. 2021. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA Journal. 19(5), e06768. Go to original source...
  23. EICHMEIER, A., PEŇÁZOVÁ, E., BARÁNEK, M. 2017. Metodika detekce a kvantifikace bakterie Xanthomonas campestris pv. campestris pomocí TaqMan® Real Time PCR systému: Certifikovaná metodika. Brno: Mendelova univerzita v Brně. ISBN 978-80-7509-517-6
  24. EICHMEIER, A., PEČENKA, J., ČECHOVÁ, J., TEKIELSKA, D. A., BARÁNEK, M. 2024. Sada pro molekulární identifikaci bakteriálních kontaminantů rodu Leifsonia metodou real-time PCR [Užitný vzor č. 37 657]. Úřad průmyslového vlastnictví České republiky. Přihláška č. 2023-41431; podáno 1. 11. 2023; zapsáno 30. 1. 2024.
  25. ELMER, W., WHITE, J. C. 2018. The Future of Nanotechnology in Plant Pathology. Annual Review of Phytopathology. 56, 111-133. Go to original source...
  26. FERNANDO, S. S. N., GUNASEKARA, T. D. C. P., HOLTON, J. 2018. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 8(1), 2-11. Go to original source...
  27. HASAN, S. 2015. A Review on Nanoparticles: Their Synthesis and Types. Research Journal of Recent Sciences. 4, 1-3.
  28. HE, Y., MUNKVOLD, G. P. 2012. Comparison of extraction procedures for detection of Xanthomonas axonopodis pv. phaseoli in common bean seed. Plant pathology. 61(5), 837-843. Go to original source...
  29. HONG, J., WANG, C., WAGNER, D. C., GARDEA-TORRESDEY, J. L., HE, F., RICO, C. M. 2021. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano. 8, 1196-1210. Go to original source...
  30. HUBBARD, J. D., LUI, A., LANDRY, M. P. 2020. Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Current Opinion in Chemical Engineering. 30, 135-143. Go to original source...
  31. INGLE, A. P., DURAN, N., RAI, M. 2014. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology. 98(3), 1001-1009. Go to original source...
  32. ISTA 2018. Handbook on seedling evaluation. 4th Edition. International Seed Testing Association.
  33. ISTA SEED HEALTH COMMITTEE. 2021. Organizing and analyzing results of the Seed Health Proficiency Tests. PT-P-03, Version 3.0. International Seed Testing Association. https://www.seedtest.org/api/rm/647V48YB6FBPKVV/pt-p-03-organizingandanalysingshptsv3-0.pdf
  34. JISHA, K. C., VIJAYAKUMARI, K., PUTHUR, J. T. 2013. Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum. 35, 1381-1396. Go to original source...
  35. KALWAR, K., SHAN, D. 2018. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism-A mini review. Micro & Nano Letters, 13(3), 277-280. Go to original source...
  36. KÖHL, J., VAN DER WOLF, J. 2005. Alternaria brassicicola and Xanthomonas campestris pv. campestris in organic seed production of Brassicae: Epidemiology and seed infection. Note 363. Wageningen: Plant Research International, pp. 1-28.
  37. KUMAR, G. D., RAJA, K., NATARAJAN, N., GOVINDARAJU, K., SUBRAMANIAN, K. S. 2020. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Materials Chemistry and Physics. 242, 122492. Go to original source...
  38. KUMAWAT, S., KHATRI, P., AHMED, A., VATS, S., KUMAR, V., JASWAL, R., WANG, Y., XU, P., MANDLIK, R., SHIVARAJ, S. M., et al. 2021. Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). Journal of Hazardous Materials. 409, 124598. Go to original source...
  39. LI, Y., LEUNG, P., YAO, L., SONG, Q. W., NEWTON, E. 2006. Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection. 62(1), 58-63. Go to original source...
  40. MA, X., GEISLER-LEE, J., DENG, Y., KOLMAKOV, A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment. 408(16), 3053-3061. Go to original source...
  41. MA, Z., GARRIDO-MAESTU, A., JEONG, K. C. 2017. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers. 176, 257-265. Go to original source...
  42. MACHADO, S., PACHECO, J. G., NOUWS, H. P., ALBERGARIA, J. T., DELERUE-MATOS, C. 2015. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment. 533, 76-81. Go to original source...
  43. MAHAKHAM, W., SARMAH, A. K., MAENSIRI, S., THEERAKULPISUT, P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports. 7, 8263. Go to original source...
  44. MARTHANDAN, V., GEETHA, R., KUMUTHA, K., RENGANATHAN, V. G., KARTHIKEYAN, A., RAMALINGAM, J. 2020. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. International Journal of Molecular Sciences. 21(21), 8258. Go to original source...
  45. MARTINS, C. H., CARVALHO, T. C., SOUZA, M. G., RAVAGNANI, C., PEITL, O., ZANOTTO, E. D., PANZERI, H., CASEMIRO, L. A. 2011. Assessment of antimicrobial effect of Biosilicate(R) against anaerobic, microaerophilic and facultative anaerobic microorganisms. Journal of Materials Science: Materials in Medicine. 22(6), 1439-1446. Go to original source...
  46. NOVOTNÝ, D., BARÁNEK, M., EICHMEIER, A., SALAVA, J., PEŇÁZOVÁ, E., PEČENKA, J., KOUDELA, M. 2019. Prostředky diagnostiky a ochrany proti vybraným druhům škodlivých mikroorganismů zelí. Praha, Czech Republic: Výzkumný ústav rostlinné výroby. ISBN 978-80-7427-291-2
  47. OʹKEEFE, T. L., TUGA, B., DENG, C., MOHAMUD, S., JAMOUS, R., SANDERS, M. A., … HAYNES, C. L. 2025. Vacuum infiltration for priming of soybean seeds: optimization and particle tracking using fluorescent silica nanoparticles. Chemical Science. 16(17), 7249-7263. Go to original source...
  48. PAPARELLA, S., ARAUJO, S. S., ROSSI, G., WIJAYASINGHE, M., CARBONERA, D., BALESTRAZZI, A. 2015. Seed priming: State of the art and new perspectives. Plant Cell Reports. 34, 1281-1293. Go to original source...
  49. PARRA, A., TORO, M., JACOB, R., NAVARRETE, P., TRONCOSO, M., FIGUEROA, G., REYES-JARA, A. 2018. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Brazilian Journal of Microbiology. 49(Suppl 1), 113-118. Go to original source...
  50. PEČENKA, J., SVOBODOVÁ, K., EICHMEIER, A., BARANEK, M. 2017. Antibacterial effect of selected nanoparticles as revealed by doubling time of treated Xanthomonas campestris pv. campestris cultures. In: Proceedings of MendelNet 2016. Brno: Mendel University in Brno, pp. 736-741.
  51. PEČENKA, J., BYTEŠNÍKOVÁ, Z., KISS, T., PEŇÁZOVÁ, E., BARÁNEK, M., EICHMEIER, A., TEKIELSKA, D., RICHTERA, L., POKLUDA, R., ADAM, V. 2021. Silver nanoparticles eliminate Xanthomonas campestris pv. campestris in cabbage seeds more efficiently than hot water treatment. Materials Today Communications. 27, 102284. Go to original source...
  52. PEČENKA, J., BARÁNEK, M., ČECHOVÁ, J., TEKIELSKA, D. A., BYTEŠNÍKOVÁ, Z., PEKÁRKOVÁ, J., RICHTERA, L., KOŘÍNEK, J. 2025. Kompozitní materiál pro podporu klíčení rostlin [Užitný vzor č. 38543; přihláška č. PUV2025-42635]. 2025, 22. dubna. Úřad průmyslového vlastnictví České republiky.
  53. PEŇÁZOVÁ, E., EICHMEIER, A., ČECHOVÁ, J., BARÁNEK, M., POKLUDA, R. 2015. Evaluation of different methods of DNA extraction for detection of bacterium Xanthomonas campestris pv. campestris in cabbage leaves. Acta Scientiarum Polonorum, Hortorum Cultus. 14(6), 141-150.
  54. PEŇÁZOVÁ, E., KOPTA, T., JURICA, M., PEČENKA, J., EICHMEIER, A., POKLUDA, R. 2018. Testing of inoculation methods and susceptibility testing of perspective cabbage breeding lines (Brassica oleracea convar. Capitata) to the black rot disease caused by Xanthomonas campestris pv. campestris. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 66(1), 139-148. Go to original source...
  55. ROBERTS, S. J., HILTUNEN, L. H., HUNTER, P. J., BROUGH, J. 1999. Transmission from seed to seedling and secondary spread of Xanthomonas campestris pv. campestris in Brassica transplants: effects of dose and watering regime. European Journal of Plant Pathology. 105(9), 879-889. Go to original source...
  56. ROBERTS, S. J., BROUGH, J., HUNTER, P. J. 2006. Modelling the spread of Xanthomonas campestris pv. campestris in module-raised brassica transplants. Plant Pathology. 56, 391-401. Go to original source...
  57. SANZARI, I., LEONE, A., AMBROSONE, A. 2019. Nanotechnology in Plant Science: To Make a Long Story Short. Frontiers in Bioengineering and Biotechnology. 7, 120. Go to original source...
  58. SARKAR, N., SHARMA, R. S., KAUSHIK, M. 2021. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Environmental Science and Pollution Research. 28, 13221-13228. Go to original source...
  59. SARKAR, R. D., DEKA, J., KALITA, M. C. 2021. Plant extract mediated green synthesis of selenium nanoparticle and its antimicrobial activity: A brief review. Innovative Microbiology and Biotechnology. 2(1), 103-110. Go to original source...
  60. SATHIYABAMA, M., MUTHUKUMAR, S. 2020. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules. 153, 297-304. Go to original source...
  61. SHAH, V., BELOZEROVA, I. 2008. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, & Soil Pollution. 197, 143-148. Go to original source...
  62. SINGH, A., SINGH, N., AFZAL, S., SINGH, T., HUSSAIN, I. 2018. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science. 53, 185-201. Go to original source...
  63. TEKIELSKA, D., PEČENKA, J., HAKALOVÁ, E., ČECHOVÁ, J., BYTEŠNÍKOVÁ, Z., RICHTERA, L., … BARÁNEK, M. 2024. Elimination of Curtobacterium sp. strain A7_M15, a contaminant in Prunus rootstock tissue culture production, using reduced graphene oxide-silver-copper and silver-selenium nanocomposites. Chemical and Biological Technologies in Agriculture. 11(1), 19. Go to original source...
  64. TRIPATHI, D. K., TRIPATHI, A., SINGH, S., SINGH, Y., VISHWAKARMA, K., YADAV, G., SHARMA, S., SINGH, V. K., MISHRA, R. K., UPADHYAY, R. G. et al. 2017. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Frontiers in Microbiology. 8, 07. Go to original source...
  65. ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ. 2017. Metodika zkoušení osiva a sadby. 2. vyd. ÚKZÚZ.
  66. USMAN, M. S., EL ZOWALATY, M. E., SHAMELI, K., ZAINUDDIN, N., SALAMA, M., IBRAHIM, N. A. 2013. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine. 8, 4467-4479. Go to original source...
  67. VIJAI ANAND, K., ANUGRAGA, A. R., KANNAN, M., SINGARAVELU, G., GOVINDARAJU, K. 2020. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Materials Letters. 271, 127792. Go to original source...
  68. WANG, F., LIU, X., SHI, Z., TONG, R., ADAMS, C. A., SHI, X. 2016. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-A soil microcosm experiment. Chemosphere. 147, 88-97. Go to original source...
  69. WANG, L., HU, C., SHAO, L. 2017. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine. 12, 1227-1249. Go to original source...
  70. XIANG, L., ZHAO, H. M., LI, Y. W., HUANG, X. P., WU, X. L., ZHAI, T., YUAN, Y., CAI, Q. Y., MO, C. H. 2015. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research. 22, 10452-10462. Go to original source...
  71. YOUNIS, M. E., ABDEL-AZIZ, H. M. M., HEIKAL, Y. M. 2019. Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South African Journal of Botany. 125, 393-401. Go to original source...
  72. ZÍTKA, O. (Ed.). 2013. Moderní nanotechnologie na počátku 21. století: kolekce učebních textů projektu OPVK NANOTEAM. 1. Vyd. Brno, Czechia: Vysoké učení technické v Brně.