
27th International Scientific Conference Economic Competitiveness and Sustainability

March 27–28, 2025, Brno, Czech Republic

8

https://doi.org/10.11118/978-80-7701-047-4-0008

LEVERAGING HTTP/3 FOR EFFICIENT 
RESTFUL API COMMUNICATION

Jiří Balej1, Andrej Juríčka1, Jiří Passinger1

1�Department of Informatics, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 
613 00 Brno, Czech Republic

ABSTRACT
The rise of IT systems automation required the shift of the management of network 
devices and servers to machine-oriented interfaces, such as REST APIs. It enables large-
scale batch requests but also creates challenges such as latency and limited concurrency 
handling. This paper investigates the potential benefits of adopting HTTP/3 for REST-based 
network and server management, examining its impact on communication efficiency. 
Specifically, the research compares different versions of HTTP in terms of communication 
performance, latency, message count, and execution speed, while exploring the advantages 
and challenges of such solutions. The findings provide valuable information on the 
integration of HTTP/3 into modern network management practices, with the aim of 
optimising automation and improving performance across IT infrastructures.

Keywords: HTTP/3, QUIC, REST API, RESTCONF, server, network, management

JEL Code: L86, C88, O31

1	 INTRODUCTION

Traditionally, servers, services, and network devices have been managed through SSH or 
web interfaces. However, with the growing adoption of IT systems management automa-
tion, machine-oriented interfaces have gained significant importance. These interfaces 
enable rapid, large-scale batch requests to devices, improving efficiency in the management 
of IT infrastructure. However, this approach introduces challenges related to response times 
and the ability of managed devices to handle large volumes of concurrent requests effectively.

Although SSH (Secure Shell) remains one of the primary protocols for network automa-
tion, its usage is typically limited to executing standard command-line instructions through 
automation tools such as Ansible, Chef, or Puppet. Legacy protocols such as SNMP (Simple 
Network Management Protocol) and TR-069 (Technical Report 069), once popular for device 
configuration, have become largely outdated due to their limited scalability and security. 
On the contrary, modern automation interfaces increasingly utilise NETCONF (Network 
Configuration Protocol), RESTCONF (RESTful Configuration Protocol), and general REST APIs 
(Representational State Transfer Application Programming Interfaces). Both the RESTCONF 
and REST APIs rely on HTTPS as their underlying communication layer.



9

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

The evolution of the HTTP protocol raises the question whether adopting the modern HTTP/3 
version could improve communication efficiency for REST-based management services. 
In the case of network devices, the HTTP version is typically fixed, with HTTP/1.1 remaining 
the most widely used. However, for servers and service interfaces, it is essential to evaluate 
which HTTP version is best suited to optimise request-response performance in management 
operations. The benefits of HTTP/2 and HTTP/3 over traditional HTTP/1.1 in terms of speed, 
parallelism, and latency can be crucial factor in enhancing automation efficiency in modern 
IT environments.

Therefore, this paper explores how the adoption of HTTP/3 can improve REST API commu-
nication and its impact on communication latency. Specifically, the research addresses 
the following questions:

•	 Research Question 1 (RQ1): Can HTTP/3 reduce latency and enhance performance for 
large-scale network management operations?

•	 Research Question 2 (RQ2): How does the performance of network and server manage-
ment differ between HTTP/1.1, HTTP/2, and HTTP/3 in terms of message count and 
execution speed?

•	 Research Question 3 (RQ3): What challenges might arise when migrating existing 
network management tools to HTTP/3?

These questions aim to provide insights into the benefits and potential limitations of adop-
ting HTTP/3 for network management tasks.

2	 RELATED WORKS

The current principles of network device automation are primarily based on the NETCONF 
and RESTCONF protocols, utilising JSON and XML as the primary data formats (Abuelanain, 
2021). While RESTCONF is specifically designed for network management, REST APIs are 
widely used beyond this scope, serving as interfaces for data exchange between various 
systems and services. Consequently, this chapter will first explore the foundational princi-
ples of REST APIs and methodologies for their testing. The second part will focus on recent 
research advancements related to the HTTP protocol.

2.1	 REST API

The systematic review of the literature on current methodologies and challenges in RESTful 
API testing was carried out by Ehsan (2022) and Golmohammadi (2023). Wu (2022) provided 
an in-depth analysis of the number of operations required in specific scenarios and the inter-
action of various parameters in each operation. 

Kim (2023) reviewed existing REST API testing tools and proposed an adaptive testing tech-
nique using reinforcement learning. Gowda (2024) compared response times across different 
REST APIs, applying a developer-focused method to assess both performance and security. 
Most recent studies on REST API testing treat APIs as black boxes, with one of the latest works 
by Poth (2024) focusing on contemporary performance evaluation.

2.2	 HTTP protocol

The use of HTTP/3 as a communication protocol for infrastructure and management tasks 
was proposed and validated by Saif (2021) through the MQTT protocol. Michel (2023) 
explored the concept of SSH over HTTP/3, highlighting key advantages such as faster session 
establishment and reduced response times. These two studies demonstrate the potential 
of HTTP/3 to improve device management protocols.



10

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

Perna (2022) conducted one of the first comprehensive evaluations of HTTP/3 performance. 
Gahtan (2024) performed extensive testing of HTTP/3 responses on the open Internet, analy-
sing approximately 7 million images to estimate response times. Ravuri (2023) provided 
a  practical example by implementing an interactive service using HTTP/3. Gupta (2024) 
investigated content delivery prioritisation in HTTP/3, focusing on minimizing head-of-line 
blocking and evaluating Quality of Experience (QoE) across various websites.

The security issues in networks were evaluated by Kashtalian (2023), where the problem 
of their detection was investigated. Attacks on HTTP/3 were comprehensively reviewed by 
Chatzoglou (2023), where all current QUIC libraries and applications were tested.

3	 REST API MANAGEMENT OVER HTTP/3

To effectively compare the efficiency, responsiveness, latency, and security of REST API 
communication across various HTTP versions, it is essential to dive deeper into the structure 
and principles of REST APIs.

3.1	 REST API management

Representational State Transfer (REST) has become a standard interface not only for applica-
tion data exchange but also for device management. Originally proposed by Fielding (2000), 
but the structure of REST APIs are now primarily standardized by OpenAPI (2024).

Communication with REST APIs is carried out using the standard HTTP protocol, predomi-
nantly through its secure variant, which utilizes SSL/TLS layer. REST APIs support all CRUD 
operations (Create, Read, Update, Delete) through the standard HTTP methods such as POST, 
GET, PUT, and DELETE. One of these methods is specified in the initial part of the request, 
followed by the resource identification via a unique URL and the used HTTP version. When 
creating or updating a resource, the message body contains the relevant data, typically in JSON 
or YAML format.

The server‘s  response includes the HTTP version, a  three-digit status code, and a  status 
message. In the case of data retrieval, the requested content is also included in the message 
body. Both the request and response may contain additional headers, such as client/server 
versions, timestamps, accepted content types, and more. The fundamental structure of the 
mandatory components is illustrated in Figure 1.

Fig. 1:	 REST API request and response structure



11

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

3.2	 HTTP development

Over the past decade, significant progress has been made in the evolution of HTTP protocols. 
The widely adopted HTTP/1.1, which dominated the web for over 20 years, has become less 
efficient in meeting the demands of modern services and networks.

The first major advancement was HTTP/2, developed based on the SPDY protocol draft. 
This version introduced several significant improvements, including mandatory TLS use, 
header compression, binary encoding, enhanced prioritization, and server push mechanisms. 
However, HTTP/2 still relies on TCP as its transport layer protocol and typically uses TLS 1.2 
or TLS 1.3.

HTTP/3, the latest version, made a significant shift by replacing TCP with UDP as the transport 
protocol and using new protocol QUIC responsible for connection handling and TLS security 
layer. This change addresses the limitations of TCP’s congestion control algorithms, which can 
slow down data exchange in cases of packet loss. HTTP/3 also mandates the use of TLS, speci-
fically version 1.3. Although HTTP/3 was officially standardized only recently (Iyengar, 2021; 
Bishop, 2022), it has been in practical use for more than five years and currently it is adopted 
by approximately 30–40% of servers, according to W3Tech statistics. Figure 2 illustrates 
the protocol structures used for HTTP communication across different versions.

3.3	 HTTP message exchange

The performance of communication is directly influenced by the number of exchanged 
message pairs (request-response), as each subsequent pair must wait for the previous one 
to complete. The delay caused by a single exchange is referred to as Round Trip Time (RTT), 
which includes the time taken to deliver a message, generate a response, and transfer it back. 
The request-response message pairs are illustrated in Figure 3 (Marx, 2021).

Fig. 2:	 Protocols stack by OSI layers for various versions of HTTP



12

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

In the first versions of HTTP (as shown in the first example in Figure 3), establishing 
a TCP session required one RTT, while an additional RTT was necessary for the actual data 
transfer. This exchange did not include a security layer (TLS/SSL), which is now essential for 
modern communication.

The introduction of HTTPS added two additional message exchanges to the process, 
increasing the total RTTs to four (second example in Figure 3). However, with the advent of 
TLS version 1.3, only one message exchange is needed to establish a secure channel, reducing 
the total number of RTTs to three (third example in Figure 3).

HTTP/3 eliminates the use of the TCP protocol, which required the first RTT for connection 
establishment. Instead, channel establishment and TLS negotiation are completed in a single 
exchange (fourth example in Figure 3). Additionally, HTTP/3 supports a method called 0-RTT, 
which enables session resumption based on a  previously established secure connection. 
However, 0-RTT introduces vulnerabilities, such as replay attacks, and is considered less secure.

1.1	HTTP communication experiment

The theoretical concepts described above were tested in a real-world environment. To vali-
date our hypotheses, we conducted experiments using different HTTP versions and evaluated 
their security aspects.

We used the curl client, with supports of all current HTTP versions. As the target was used cloud-
flare-quic.com, which also supports all current HTTP versions. To minimize the size of request 
and response we used method HEAD, which grabs only website header. All communication 
finished with status code 200 OK, but with plain HTTP (non-secure), the server responds with 
a 301 (Moved Permanently) status code. This response does not affect the validity of our results.

HTTP version negotiation and communication details were verified through the verbose 
output of the curl command. Additionally, all exchanged messages were captured using 
Wireshark and analyzed with various tools.

Figure 4 shows the resulting flow graph. We highlighted the key differences in total commu-
nication time and message direction. Rather than counting individual packets, we focused 
on communication directions, as the primary delays sources from message transmission 
between communication partners.

To maintain relevance to data retrieval performance, we limited the analysis to the point 
of receiving the HTTP response status code, excluding the additional 3–4 message exchanges 
typically involved in closing a  TCP session—since those steps do not impact the retrieval 
of data itself.

Fig. 3:	 HTTP versions session establishment communication
Source: Marx, 2021)



13

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

Data in Figure 4 clearly shows that HTTP/1.1 without TLS and HTTP/3 with TLS are compa-
rable in terms of total communication time. While the non-secure HTTP required fewer 
message exchanges overall, HTTP/3—despite having the highest number of individual 
messages—achieved communication in just six directional exchanges. In our assessment, 
HTTP/3 outperforms the other secure HTTP variants in this experiment, offering better effici-
ency in terms of both speed and message flow structure.

4	 RESULTS

4.1	 Research Question 1

•	 Can HTTP/3 reduce latency and enhance performance for large-scale network manage-
ment operations?

HTTP/3 can reduce latency by eliminating the need for the TCP protocol and enabling 0-RTT 
(Zero Round-Trip Time) connections. It also offers improved concurrency handling compared 
to HTTP/2 and older versions. Furthermore, the use of the UDP protocol allows faster recovery 
from packet loss than TCP, contributing to enhanced overall performance.

4.2	 Research Question 2

•	 How does the performance of network and server management differ between HTTP/1.1, 
HTTP/2, and HTTP/3 in terms of message count and execution speed?

Modern HTTP versions, such as HTTP/2 and HTTP/3, enable multiplexing, which enhances 
performance by addressing the issue of head-of-line blocking. HTTP/3, in particular, reduces 
the number of exchange messages compared to older versions, further improving both perfor-
mance and execution speed.

Our experimental results confirm that HTTP/3 outperforms both secure HTTP/1.1 and 
HTTP/2 in terms of total required time. Interestingly, HTTP/2 was observed to be slower than 
HTTP/1.1 in our test scenarios, which may be attributed to its more complex connection 
management and dependency handling.

Fig. 4:	 Retrieving website header (method HEAD) using various HTTP versions



14

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

4.3	 Research Question 3 

•	 What challenges might arise when migrating existing network management tools 
to HTTP/3 or QUIC?

One of the main challenges with network devices and systems is the lack of support and 
willingness from vendors to adopt newer technologies. However, HTTP/3 is now well-esta-
blished, widely used and there are available many public libraries to facilitate integration. 
Despite its growing adoption, issues may still arise during implementation. Additionally, the 
use of UDP instead of TCP in HTTP/3 remains relatively untested in some environments, which 
may pose challenges for stability and performance in certain network conditions.

5	 CONCLUSIONS

RESTful APIs are widely applied in various domains, including IoT, cloud applications, 
services and device management, where efficient, scalable, and loosely coupled communica-
tion is necessary. These APIs have also become a foundation for popular web frameworks and 
technologies, enabling seamless integration of third-party services, and enhancing interope-
rability in modern software ecosystems.

The findings of the paper highlight the potential of HTTP/3 for REST APIs, offering benefits 
such as reduced latency and enhanced performance. By leveraging UDP protocol and intro-
ducing features such as 0-RTT connections, HTTP/3 addresses limitations of previous HTTP 
versions, particularly in handling packet loss and reducing exchange overhead. Comparisons 
of HTTP version reveal that modern ones like HTTP/2 and HTTP/3 benefit from advancements 
such as multiplexing and binary format, which improve execution speed and efficiency and 
at the same time secure the communication.

While HTTP/3 presents promising performance improvements for network and server 
management, transitioning existing tools to these protocols involves challenges such as compa-
tibility issues, devices updates, and new security considerations (Kuhlewind, 2022). Additional 
testing and evaluation is necessary before implementing the protocol for device management.

A logical extension of this research involves testing the reliability of REST APIs over HTTP/3 
under a  variety of conditions. Future work will focus on evaluating performance across 
different network scenarios, including varying levels of delay, bandwidth, and packet loss, to 
assess how HTTP/3 handles adverse environments. The impact of concurrent client requests 
on API responsiveness and throughput will also be measured, providing insights into scalabi-
lity. Additionally, we plan to investigate how the size of HTTP requests—particularly in Create 
and Update operations—affects performance. Another important aspect will be verifying the 
current level of support for REST APIs over HTTP/3 and HTTP/2 in existing network devices 
and server platforms. Finally, special attention will be given to cybersecurity, specifically 
through testing the security implications of the 0-RTT (zero round-trip time) feature when 
used in RESTful API communications.

REFERENCES

ABUELANAIN, K., DOYLE, J., KARNELIUK, A., JAIN, V. 2021. Network Programmability and Automation 
Fundamentals. Cisco Press, New Jersey, USA, 800 pages. ISBN: 978-1-58714-514-8

BISHOP, M. 2022. RFC 9114. HTTP/3. Jun. 2022. RFC Editor. https://www.rfc-editor.org/info/rfc9114
EHSAN, A., ABUHALIQA, M. A. M. E., CATAL, C., MISHRA, D. 2022. RESTful API Testing Methodologies: 

Rationale, Challenges, and Solution Directions. Applied Sciences. 12(9), 4369. https://doi.org/10.3390/
app12094369



15

Leveraging HTTP/3 for Efficient RESTful API Communication

Jiří Balej, Andrej Juríčka, Jiří Passinger

FIELDING, R. T. 2000. Architectural Styles and the Design of Network-based Software Architectures. 
Ph.D. Dissertation. University of California, Irvine.

GATHAN, B., SHAHLA, R. J., COHEN, R., BRONSTEIN, A. M. 2024. Estimating the Number of HTTP/3 Responses 
in QUIC Using Deep Learning. arXiv:2410.06140. https://doi.org/10.48550/arXiv.2410.06140

GOLMOHAMMADI, A., ZHANG, M., ARCURI, A. 2023. Testing RESTful APIs: A Survey. ACM Transactions 
on Software. Engineering and Methodology. 33(1), 27. https://doi.org/10.1145/3617175

GOWDA, P., GOWDA, A. N. 2024. Best Practices in REST API Design for Enhanced Scalability and 
Security. Journal of Artificial Intelligence, Machine Learning and Data Science. 2(1), 827–830. https://
doi.org/10.1145/3617175 doi.org/10.51219/JAIMLD/priyanka-gowda/202

GUPTA, A., BARTOS, R. 2024. Improving Web Content Delivery with HTTP/3 and Non-Incremental EPS. 
In: 2024 33rd International Conference on Computer Communications and Networks (ICCCN). Kailua-
Kona, HI, USA, pp. 1–9. https://doi.org/10.1109/ICCCN61486.2024.10637641

IYENGAR, J., THOMSON, M. 2021. RFC 9000, QUIC: A UDP-Based Multiplexed and Secure Transport, 
May 2021. RFC Editor. https://www.rfc-editor.org/info/rfc9000

KASHTALIAN, A., LYSENKO, S., SAVENKO, B., SOCHOR, T., KYSIL, T. 2023. Principle and Method of 
Deception Systems Synthesizing for Malware and Computer Attack Detection. Radioelectronic and 
Computer Systems. 4, 112–151. https://doi.org/10.32620/REKS.2023.4.10

KIM, M., SINHA, S., ORSO, A. 2024. Adaptive REST API Testing with Reinforcement Learning. ACM 
International Conference on Automated Software Engineering. IEEE Press, pp. 446–458. https://doi.
org/10.1109/ASE56229.2023.00218

KUHLEWIND, M., TRAMMELL, B. 2022. RFC 9308, Applicability of the QUIC Transport Protocol, Sep. 
2022. RFC Editor. https://www.rfc-editor.org/info/rfc9308

MARX, R. 2021. HTTP/3 From A  To Z: Core Concepts. Smashing magazine: For Web Designers And 
Developers. Aug. 9, 2021. https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/

MICHEL, F., BONAVENTURE, O. 2023. Towards SSH3: how HTTP/3 improves secure shells. 
arXiv:2312.08396. https://doi.org/10.48550/arXiv.2312.08396

OPENAPI. 2024. OpenAPI pecification v3.1.1. OpenAPI Initiative. https://spec.openapis.org/oas/latest.html
PERNA, G., TREVISAN, M., GIORDANO, D., DRAGO, I. 2022. A  first look at HTTP/3 adoption and 

performance. Computer Communications. 187, 115–124. ISSN 0140-3664. https://doi.org/10.1016/j.
comcom.2022.02.005

POTH, A., RRJOLLI, O., ARCURI, A. 2024. Technology adoption performance evaluation applied to testing 
industrial REST APIs. Automated Software Engineering. 32, 5. https://doi.org/10.1007/s10515-024-00477-2

RAVURI, H. K., VEGA, M. T., VAN HOOFT, J. D., WAUTERS, T., DE TURCK, F. 2023. Adaptive Partially 
Reliable Delivery of Immersive Media Over QUIC-HTTP/3. IEEE Access. 11, 38094–38111. https://doi.
org/10.1109/ACCESS.2023.3268008. 

SAIF, D., MATRAWY, A. 2021. A Pure HTTP/3 Alternative to MQTT-over-QUIC in Resource-Constrained 
IoT. In: 2021 IEEE Conference on Standards for Communications and Networking (CSCN). Thessaloniki, 
Greece, pp. 36–39. https://doi.org/10.1109/CSCN53733.2021.9686113

WU, H., XU, L., NIU, W., NIE, C. 2022. Combinatorial Testing of RESTful APIs. In: ACM 44th 
International Conference on Software Engineering (ICSE). Pittsburgh, USA, pp. 426–437. https://doi.
org/10.1145/3510003.3510151

Acknowledgement
This paper was supported by the project CZ.02.1.01/0.0/0.0/16_017/0002334 Research 
Infrastructure for Young Scientists, this is co-financed from Operational Programme.

Contact information
Jiří Balej: e-mail: jiri.balej@mendelu.cz
Andrej Juríčka: e-mail: andrej.juricka@mendelu.cz
Jiří Passinger: e-mail: jiri.passinger@mendelu.cz


