
DOI: 10.11118/978-80-7509-990-7-0084
USE OF ANNOTATED IMAGE DATA FOR FRUIT DIVERSITY ANALYSIS
- Miroslav Jaroš1, Jiří Podivín1, Petr Pernes1, Oldřich Trenz1
- 1 Department of Informatics, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
This paper deals with a method of development of an annotated image dataset for the detection and classification of plant tissues, aimed at supporting automation in agriculture. The work includes a collection of high-definition image data, their annotation and utility scripts, with the aim of creating a universally accessible dataset for the scientific community. The method is designed to be compatible with off-the-shelf hardware, in order to better support research and development in the field of automated plant identification and plant disease diagnostics. This approach has the potential to significantly improve the efficiency of cultivation processes and support the implementation of advanced technologies in the agricultural sector, along with the automation of this sector.
Keywords: image analysis, plant classification, dataset, learning, annotation, image data
pages: 84-92, online: 2024
References
- AFONSO, M., FONTEIJN, H., POLDER, G., WEHRENS, R., LENSINK, D., FABER, N. and MOOIJ, M. 2021. Rob2Pheno Annotated Tomato Image Dataset (Version 3) [online]. Available at: https://data.4tu.nl/articles/dataset/Rob2Pheno_Annotated_Tomato_Image_Dataset/13173422/3
- CHANG, Y.-H. 2020. Dataset of Tomato Leaves [dataset online]. https://data.mendeley.com/datasets/ngdgg79rzb/1
- CHIU, M. T., XU, X., WEI, Y., HUANG, Z., SCHWING, A., BRUNNER, R., KHACHATRIAN, H., KARAPETYAN, H., DOZIER, I., ROSE, G., WILSON, D., TUDOR, A., HOVAKIMYAN, N., HUANG, T. S. and SHI, H. 2020. Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis (Version 2) [online]. https://arxiv.org/abs/2001.01306
Go to original source...
- DENG, J., DONG, W., SOCHER, R., LI, L.-J., KAI, L. and LI, F.-F. 2009. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition [online]. https://ieeexplore.ieee.org/document/5206848
Go to original source...
- FARMAI, U. Z. 2024. plantorgans (Version 6bdf588) [dataset]. Hugging Face. https://doi.org/10.57967/HF/2023
Go to original source...
- FENU, G. and MALLOCI, F. M. 2021. DiaMOS Plant: A Dataset for Diagnosis and Monitoring Plant Disease. Agronomy, 11(11), p. 2107. MDPI AG. https://www.mdpi.com/2073-4395/11/11/2107
Go to original source...
- GAJJAR, V. K., NAMBISAN, A. K. and KOSBAR, K. L. 2022. Plant Identification in a Combined-Imbalanced Leaf Dataset. In: IEEE Access. Vol. 10, pp. 37882-37891. Institute of Electrical and Electronics Engineers (IEEE). https://ieeexplore.ieee.org/document/9751066
Go to original source...
- GRINBLAT, G. L., UZAL, L. C., LARESE, M. G. and GRANITTO, P. M. 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, pp. 418-424. Elsevier BV [online]. https://www.sciencedirect.com/science/article/pii/S0168169916302242
Go to original source...
- GUO, P., XUE, Z., LONG, L. R. and ANTANI, S. 2020. Cross-Dataset Evaluation of Deep Learning Networks for Uterine Cervix Segmentation. Diagnostics, 10(1), p. 44. MDPI AG [online]. https://www.mdpi.com/2075-4418/10/1/44
Go to original source...
- HUGHES, D. P. and SALATHE, M. 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics (Version 2). arXiv [online]. https://arxiv.org/abs/1511.08060
- JIA, W., XU, Y., LU, Y., YIN, X., PAN, N., JIANG, R. and GE, X. 2023. An accurate green fruits detection method based on optimized YOLOX-m. Frontiers in Plant Science, 14. Frontiers Media SA [online]. https://www.frontiersin.org/articles/10.3389/fpls.2023.1187734/full
Go to original source...
- ÖZTÜRK, B. and ÖZKAR, M. 2022. Creating and Using Mask Images for Segmentation in Point Cloud Data. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences: Vol. XLIII-B2-2022 (pp. 1133-1138). Copernicus GmbH [online]. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2022/1133/2022/
Go to original source...
- PAK, M. and KIM, S. 2017. A review of deep learning in image recognition. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). IEEE [online]. https://ieeexplore.ieee.org/document/8320684
Go to original source...
- SAPUKHINA, N., BOUREAU, T. and ROUSSEAU, D. 2022. Plant disease symptom segmentation in chlorophyll fluorescence imaging with a synthetic dataset. Frontiers in Plant Science, Vol. 13. Frontiers Media SA [online]. https://www.frontiersin.org/articles/10.3389/fpls.2022.969205/full
Go to original source...
- STASTNY, J. and SKORPIL, V. 2007. Analysis of Algorithms for Radial Basis Function Neural Network. In: Personal Wireless Communications. Springer New York, vol. 245, pp. 54-62, ISSN 1571-5736, ISBN 978-0-387-74158-1, WOS:000250717300005
Go to original source...
- STASTNY, J., SKORPIL. V., BALOGH, Z. and KLEIN, R. 2021. Job shop scheduling problem optimization by means of graph-based algorithm. Applied Sciences, 11(4), 1921. ISSN 2076-3417. https://doi.org/10.3390/app11041921
Go to original source...
- UKWUOMA, C. C., ZHIGUANG, Q., BIN HEYAT, M. B., ALI, L., ALMASPOOR, Z. and MONDAY, H. N. 2022. Recent Advancements in Fruit Detection and Classification Using Deep Learning Techniques. In: KHAN, D. M. (Ed.). Mathematical Problems in Engineering. pp. 1-29. Hindawi Limited [online]. https://www.hindawi.com/journals/mpe/2022/9210947/.
Go to original source...
- WANG, P., TANG, Y., LUO, F., WANG, L., LI, C., NIU, Q., and LI, H. 2022. Weed25: A deep learning dataset for weed identification. Frontiers in Plant Science, 13, Frontiers Media SA [online]. https://www.frontiersin.org/articles/10.3389/fpls.2022.1053329/full
Go to original source...
- WSPANIALY, P., BROOKS, J. and MOUSSA, M. 2020. An Image Labeling Tool and Agricultural Dataset for Deep Learning (Version 1). arXiv [online]. https://arxiv.org/abs/2004.03351
- ZHANG, Y., WANG, S., JI, G. and PHILLIPS, P. 2014. Fruit classification using computer vision and feedforward neural network. Journal of Food Engineering, 143, 167-177. Elsevier BV. https://doi.org/10.1016/j.jfoodeng.2014.07.001
Go to original source...